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On the estimation of Weibull's parameters 
in brittle materials 
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The parameters in Weibull's specific risk function are estimated using several 
methods, both in compression and in bending. To this end, several formulae are 
employed for different values of the limiting stress eL. The parameters are estimated 
by minimizing Z 2 in order to compare the capacity of the different formulae for 
approximating these parameters. In the case of bending, the error committed when 
obtaining the parameters from a uniform-stress-field Weibull function is of the order 
of 100%. 

1. In t roduct ion  
From the time when the Weibull theory [1] was 
established, one of the first works to estimate 
Weibull's parameters was that of  Jayati laka and 
Trustrum [2], but in that work the bending was 
approximated using a uniaxial constant stress. 
This procedure has already been discussed by 
Kittl and Gfinther [3], and some differences in 
the estimation of the parameters  are pointed out 
below. 

In a recent work, Glandus and Boch [4] have 
used this approximation in order to determine 
the uncertainty in Weibull 's modulus as a func- 
tion of the number  of  samples tested. 

The present work has been done in order to 
show the differences in the estimation of  
Weibull 's parameters  in bending using, on the  
one hand, an exact expression for the cumulative 
probability of  fracture, previously obtained by 
Kittl [5], and, on the other, the approximate 
formula calculated on the basis of  a uniaxial 
constant stress field. 

2. On the es t imat ion  of Weibu l l ' s  
parameters  in a uniaxial  
compression or t rac t ion  stress 
f ield 

In the general theory of  fracture statistics [6] for 
a uniaxial variable stress field a(?), the cumu- 

lative probability of  fracture F(o) is 

F(o) = 1 - exp - :v~b[~ ~ V 

(1) 

where ~ is the position vector, V is the body 
volume, V0 is the unit volume and ~b(tr) is 
Weibull 's specific risk function. Usually this 
function 4~(o) is 

f [ ( ~  - ~L) /o0 ]  m ~ >/ GL 
~(~) = { (2) 

0 ~ < c r  L 

where m and a0 are parameters and o- c is the 
limiting stress below which there is no fracture. 
When o(?) is constant, Equation 1 is trans- 
formed into 

F(~) = 1 - exp - ~ (3) 

which in turn is easily transformed into 

~(a) = In 1 --F(~r  = V0 4~(cr) (4) 

In order to determine the parameters  in 
Weibull 's specific risk function, many works 
have been published [2, 7-9], with diverse 
methods for estimating these parameters,  such 
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Figure 1 Weibull function's 
nomogram for a uniform stress 
field in the case of a traction or 
compression test, where In ~' = m 
l n ( a / a L -  i) is plotted as a 
function of In (a/aL) for several 
m. The circles correspond to 30 
glass cylinders broken by com- 
pression. In order to obtain m, a L 
and G 0 from the nomogram, the 
points are drawn on transparent 
paper, and moved in order to be 
superimposed on the nomogram 
curve that best fits the exper- 
imental points; this gives m. The 

constants o- L and C = C(ao, aL, 
m) are obtained from the dis- 
tances between the reference axis 
of the experimental points on the 
transparent paper and the nomo- 
gram axis. 

as the old and well known least-squares method, 
more special procedures such as the method of 
moments  and the minimum chi-square method, 
and recently the laborious maximum-likelihood 
method. 

From the practical viewpoint, it is important  
to get an approximation of  the parameters  by 
means of a method that is speedy and less expen- 
sive. The formulation of such a convenient 
method is one of the problems solved in the 
present paper�9 Thus, for estimating Weibull 's 
parameters  in a uniaxial compression or traction 
stress field, a graphical method is developed 
herein. This method consists of  obtaining the 
said parameters by comparison with a non- 
dimensional nomogram.  

To find the non-dimensional curves of  
Weibull 's plot, it is necessary to proceed as 
follows. From Equations 4 and 2 we have 

g (O" --  aL~ m (5) 

~(~) = ~ \  ~0 / 

Rearranging this and taking logarithm s we get 

I V ( a L e " l +  m l n ( a  ) In [~(a)] = In -Voo kao/ J ~L - 1 
(6) 

Now if we plot m In (a/aL- 1) against 

ln(a /aL) ,  for various values of  Weibull 's 
modulus m, as shown in Fig. 1 we obtain a 
non-dimensional graph, called a nomogram 
for constant stress field. The parameters m, a0 
and aL in a particular case are obtained by draw- 
ing the Weibull plot on transparent paper, and 
moving it in order that the experimental points 
can be fitted to a nomogram curve to determine 
m. Then In ~ is on the m In (cr/a L -- 1) axis as a 
function of In a. Consequently, from the In 
axis is obtained 

C = In Vookao/ l 

and from the In a axis is obtained In aL. 
The results obtained using this method were 

compared with more sophisticated methods 
using a set of  data given in Kittl et al. [7], consist- 
ing of a batch of 30 samples of  commercial glass 
rods 0.007m in diameter and 0.014m high; 
hence the volume of a rod is 0.539 cm 3. The faces 
of  the cylinders were polished to get a uniform 
compression stress and then the cylinders were 
broken using a Monsanto Manual  Machine. As 
Kittl and Aldunate [6] demonstrated that their 
observed compression failure stress in com- 
pacted cement cylinders was fitted better by a 
log-normal distribution than by a Weibull dis- 
tribution data for, glass cylinders were used 
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T A B L E I Statistical parameters of Weibull's distribution for a batch of 30 glass rods 0.007 m in diameter and 0.014 m 
high (units in MPa). 

Parameters Method 

Nomogram Least Moments Maximum 
squares likelihood 

m 2.0 2.2 2.2 2.2 
a 0 (x 10 -2) 89.1 16.9 15.7 15.6 
O" L 81.2 83.3 89.8 90.5 

Z 2 < Z~.95,t 3.82 2.93 2.83 2.87 

Z2.95,1 = 3.84; degrees of freedom, v = 1, with five classes. 

because the Weibull distribution is better than 
any other in this case [7]. 

The final result is presented in Table I, which 
shows that the parameters estimated by means 
of the nomogram have a small uncertainty in 
comparison with the parameters obtained using 
sophisticated methods. This uncertainty is 
acceptable inasmuch as the nomogram method 
is the most speedy and least expensive of all the 
diverse methods mentioned here. 

3. On the estimation of Weibul l 's  
parameters under f lexure 

The general theory of fracture statistics predicts 
the correct expression by means of the cumu- 
lative probability of  failure developed by Kittl 
[5] for tests applying three-point bending. 

For  the case of  a rectangular bar of length L, 
width b and height h, subject to a flexural test 
applying a fracture load P at the centre, the 
cumulative probability of  failure is 

F(a) = 1 - exp 2(m + 1) V0 \ ~ 0 /  O'/O'L 

• f;/% (rt - 1)m+'r/ dr/] (7) 

where r = 3pL/bh 2 is the maximum stress in the 
body at fracture under load P. Obviously 
Equation 7 is difficult to use to find the par- 
ameters m, ~0 and ~c. For  this reason, authors 
sometimes use the form wherein or = 0, namely 

E (:0) F(tz) = 1 -- exp 2(m -k- 1)2I/0 

(8) 

whose mathematical treatment is easy, or the 
cumulative probability of failure for a constant 
uniaxial compression or traction stress field 

3780 

F(o-) = 1 -  exp - V0 \ a 0 /  (9) 

Equations 8 and 9 exhibit analogous form, 
with the same parameter m but with different 
parameters a 0. This is easily seen by linearizing 
the equations as follows: 

+ m l n o  

In In 1 ---F(~ = In + ra in  

bhL 

+ 1)2Vo U 

(10) 

(11) 

the non- The first method developed is 
dimensional graph denominated nomogram 
for flexure, which is obtained by rearranging 
Equation 7; then it is possible to get the follow- 
ing non-dimensional form: 

In r = in 2(m + 1)2V0 \0"0/ J 

mln( ) 
(r/-  1)~ 

+ f ?  . d.)  

Then plotting 

m In (o/at)  

\(O'/O'L) m + l (  m--[- 1 fa 07--r/1)m+l .J + In j /% d• 

against In (~/~rr) , for various values of  par- 
ameter m, we obtain the nomogram for flexure 
shown in Fig. 2. The parameters m, a0 and ac for 
the cumulative probability of failure under 
flexure are obtained by comparison between the 
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Figure 2 Weibull funct ion 's  n o m o g r a m  for a variable stress field in the case of  a rectangular  beam subjected to a flexural 
test of  three-point  bending, where (m+l fo/oL(~-m+' ) 

m - - - -  dr  t In ~" = In (a/ac) + In \(c~/ffc),,~l .,i r/ 

is plotted as a function of  In (el/fie). The points  within the circles come from 32 compacted cement paste bars  broken by 
flexion. Here m, a c and C = C(a0, ac,  m) are obtained in the same way as in Fig. 1. 

Weibull plot and the nomogram in the same way 
as explained above, where from the In ~ axis is 
obtained 

C = In 2(m + l )2V0\a0/  j 

and from the In a axis is obtained In ac. 
The second method developed is the minimum 

chi-square method [10, 11]. This procedure is 
similar to the maximum-likelihood method; 
however this latter procedure is applicable to 
more general problems. The minimum chi- 
squares are asymptotically efficient and squared 
error-consistent estimators under quite general 
conditions. The Z 2 is 

f [k i -- nPi(m, ao, O'L; O'/)] 2 Z 2 
,=, n p - ~ ,  ~-0; -~L. ~ ) - (13)  

where the population is classified into r classes 
each comprising k~ elements, n is the number of 
trials ~=1 k~ = n and Pi is the probability of  
failure in the classes. Then the minimum con- 

dition for chi-squared is 

2 _ f,  ( . k , -  (k, = 2 3c~j ,=, ~ + 2nP, J 

x -  = 0 (14) 

where ~i = (m, a0, ac) and j = 1, 2, 3. There- 
fore the estimators of  minimum chi-square are 
obtained by solving the nonlinear system of 
Equation 14. For  large samples the second term 
appearing within the parentheses is neglected; in 
this case, in general it is easier to solve the 
following system 

,=, P~ J ~  = 0 j = 1 , 2 , 3  (15) 

Owing to the complicated nature of  the cumu- 
lative probability of failure under flexure, it is 
very difficult to solve the systems of Equations 
14 or 15. Hence it is necessary to program an 
algorithm with back-tracking to reach the mini- 
mum chi-square using the general Equation 13. 
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TABLE II Statistical parameters of Weibull's distribution for a batch of 32 samples of compacted cement paste, 
broken under flexure (units in MPa) 

Parame te r s  F lexure  Trac t ion  

~rL 4~ 0 Cr L = 0 a e # 0 a e = 0 
Leas t  Leas t  

N o m o g r a m  Z 2 Leas t  Z 2 
m i n i m u m  squares  m i n i m u m  squares  squares  

m 3.00 3.09 6.43 6.11 1.836 6.43 
a 0 6.00 x 10 2 6.38 x 10 -z 1.51 1.35 1.23 • 10 -2 3.13 

a e 6.96 7.03 - 11.67 - 

Z2 < ~2.95, I 3.14 1.67 2.90 2.85 2.92 2.89 

z~.95,1 = 3.84; degrees of freedom, v = 1, with five classes. 

The back-tracking algorithm is very efficient 
for finding the minimum of the chi-square func- 
tion; this algorithm is more useful in games and 
simulations that allow one to find the solution of  
a problem through a discrete number  of  steps. 
One of  the problems regarding this method is the 
case of  a small sample, for which it is not applic- 
able. Another  difficulty is the choice of  adequate 
classes having at least five elements each. 

In order to compare the efficiency of  the dif- 
ferent methods, data supplied by Kittl and 
Gfinther [12] were used, consisting of a batch of  
32 samples of  compacted cement paste, 0.0635 m 
long, 0.023 m wide and 0.005 77 m high. These 
rectangular bars were broken applying the three- 
point bending test. The results are shown in 
Table II; moreover,  the parameters  used for the 
cumulative probabili ty of  failure for a constant 
stress field (traction or compression) and for the 
cumulative probabili ty of  failure under flexure 
with a L = 0 were computed. The chi-square test 
was also done to compare the several methods 
and distributions employed for describing the 

behav iour  of  materials. 
Table II  evidently shows the necessity of  using 

Equation 7 for the cumulative probability of  frac- 
ture under flexure, with three parameters, to rep- 
resent the behaviour of  Weibull material under 
bending. Besides, when using a formula for the 
cumulative probabili ty of  fracture for constant 
stress field to define the behaviour of  a Weibull 
material under flexure (variable stress field), the 
error committed in the estimation of parameters  
m, a0 and O-c amounts from 60% to 700%. 

Hence, in general, we must conclude that in a 
variable stress field it is not possible to obtain 
Weibull 's parameters  with an acceptable 
approximation if the stress field is approximated 
using a constant field. 
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I f  Weibull statistics are used, it is assumed 
that the material follows their laws, and conse- 
quently the correct expressions must be used for 
the stress field, as has already been pointed out 
by Kittl and Gfinther [3]. 

Acknowledgements 
The authors are grateful to Professor Atilano 
Lamana,  Director of  IDIEM,  for his constant 
encouragement, to the Fondo Nacional de 
Desarrollo Cientifico y Tecnol6gico for Grant  
No. 0132/84 and to Raymond Toledo for his 
assistance. 

References 
1. W. W E I B U L L ,  Ing. Vetenskaps Akad. Handl. 151 

(1939) I. 
2. A. de S. J A Y A T I L A K A  and  K. T R U S T R U M ,  J. 

Mater. Sci. 14 (1979) 1080. 

3. P. K I T T L  and  O. G O N T H E R ,  ibid. 17 (1982) 922. 

4. J. C. G L A N D U S  and  P. BOCH,  J. Mater. Sci. 
Lett. 3 (1984) 74. 

5. P. K I T T L ,  Res. Mech. 1 (1980) 161. 
6. P. K I T T L  and  R~ A L D U N A T E ,  J. Mater. Sci. 18 

(1983) 2947. 
7. P. K I T T L ,  M. L E O N  and  G. M. C A M I L O ,  

" A d v a n c e s  in F rac tu re  Research" ,  Vol. 4 (Pe rgamon  

Press, Oxford ,  1985). 
8. M. L E O N  and  P. K I T T L ,  Latin Am. J. Met. 

Mater. in press.  
9. W. T R A D I N I K ,  K. K R O M P  and  R. E. PABST,  

Materialpri~f 23 (1981) 42. 

10. A. M O O D  and  F .  A. G R A Y B I L L ,  " I n t r o d u c t i o n  

to the Theory  of  Sta t i s t ics"  ( M c G r a w  Hill ,  New York ,  

1962) pp.  308 11. 
I1. H. C R A M E R ,  " M 4 t o d o s  Matem~t i cos  de 

Es tad l s t i ca"  (Agui la r  SA de Ediciones,  Madr id ,  1970) 
pp. 477-518.  

12. P. K I T T L  and  ,O. G O N T H E R ,  Res. Meehaniea 
Lett. 1 (1981) 145. 

Received 1 October 
and accepted 11 December 1984 


